Franco Belge Lorraine Manual Dexterity
Franco Belge Lorraine Manual Dexterity. Speaking with Vampires. Preferred Citation: White, Luise. Speaking with Vampires: Rumor and History in Colonial Africa.
Sitemap Search: 4454, Steve Harris 3346, Rouben Cholakian 326, Snakebite 9918 - Pharmacokinetics, Metabolism, Pharmaceutics, and Toxicology, Chao Han, Charles B. Davis, Binghe Wang 1104, Jeanne Lockwood, Peter Hudson 1103 - An asymmetric conflict in historical and comparative perspective, Clive Jones, Sergio Catignani 726, Sater Almir 009, Various Artists 5525 - The Graphic Novel: Quick Text Version, Charles Dickens 7755 - Institutional License (1-3 Users) 8825, William Saroyan 1177, Hubert Cancik, Helmuth Schneider 4424, J.
Articles in This Slice 243 ICHTHYOLOGY (from Gr. Ἰχθύς, fish, and λόγος, doctrine or treatise), the branch of zoology which treats of the internal and external structure of fishes, their mode of life, and their distribution in space and time.
According to the views now generally adopted, all those vertebrate animals are referred to the class of fishes which combine the following characteristics: they live in water, and by means of gills or branchiae breathe air dissolved in water; the heart consists of a single ventricle and single atrium; the limbs, if present, are modified into fins, supplemented by unpaired median fins; and the skin is either naked or covered with scales or with osseous plates or bucklers. With few exceptions fishes are oviparous.
There are, however, not a few members of this class which show a modification of one or more of these characteristics, and which, nevertheless, cannot be separated from it. History and Literature down to 1880 The commencement of the history of ichthyology coincides with that of zoology generally. Aristotle (384-322 B.C.) had a perfect knowledge of the general structure of fishes, which he clearly discriminates both from the aquatic animals with lungs and mammae, i.e. Mano Negra Album Download here. Cetaceans, and from the various groups of aquatic invertebrates.
According to him: “the special characteristics of the true fishes consist in the branchiae and fins, the majority having four fins, but those of an elongate form, as the eels, having two only. Some, as the Muraena, lack the fins altogether.
The rays swim with their whole body, which is spread out. The branchiae are sometimes furnished with an operculum, sometimes they are without one, as in the cartilaginous fishes. No fish has hairs or feathers; most are covered with scales, but some have only a rough or a smooth skin.
The tongue is hard, often toothed, and sometimes so much adherent that it seems to be wanting. The eyes have no lids, nor are any ears or nostrils visible, for what takes the place of nostrils is a blind cavity; nevertheless they have the senses of tasting, smelling and hearing. All have blood.
All scaly fishes are oviparous, but the cartilaginous fishes (with the exception of the sea-devil, which Aristotle places along with them) are viviparous. All have a heart, liver and gall-bladder; but kidneys and urinary bladder are absent. They vary much in the structure of their intestines: for, whilst the mullet has a fleshy stomach like a bird, others have no stomachic dilatation. Pyloric caeca are close to the stomach, and vary in number; there are even some, like the majority of the cartilaginous fishes, which have none whatever. Two bodies are situated along the spine, which have the function of testicles; they open towards the vent, and are much enlarged in the spawning season. The scales become harder with age. Not being provided with lungs, fishes have no voice, but several can emit grunting sounds.
They sleep like other animals. In most cases the females exceed the males in size; and in the rays and sharks the male is distinguished by an appendage on each side of the vent.” 244 Aristotle’s information on the habits of fishes, their migrations, mode and time of propagation, and economic uses is, so far as it has been tested, surprisingly correct. Unfortunately, we too often lack the means of recognizing the species of which he gives a description. His ideas of specific distinction were as vague as those of the fishermen whose nomenclature he adopted; it never occurred to him that vernacular names are subject to change, or may be entirely lost in course of time, and the difficulty of identifying his species is further increased by the circumstance that sometimes several popular names are applied by him to the same fish, or different stages of growth are designated by distinct names. The number of fishes known to Aristotle seems to have been about one hundred and fifteen, all of which are inhabitants of the Aegean Sea. That one man should have laid so sure a basis for future progress in zoology is less surprising than that for about eighteen centuries a science which seemed to offer particular attractions to men gifted with power of observation was no further advanced. Yet such is the case.
Aristotle’s successors remained satisfied to be his copiers or commentators, and to collect fabulous stories or vague notions. With few exceptions (such as Ausonius, who wrote a small poem, in which he describes from his own observations the fishes of the Moselle) authors abstained from original research; and it was not until about the middle of the 16th century that ichthyology made a new step in advance by the appearance of Belon, Rondelet and Salviani, who almost simultaneously published their great works, by which the idea of species was established. Belon travelled in the countries bordering on the eastern part of the Mediterranean in the years 1547-1550; he collected rich stores of positive knowledge, which he embodied in several works. The one most important for the Belon. Progress of ichthyology is that entitled De aquatilibus libri duo (Paris, 1553). Belon knew about one hundred and ten fishes, of which he gives rude but generally recognizable figures. Although Belon rarely gives definitions of the terms used by him, it is not generally very difficult to ascertain the limits which he intended to assign to each division of aquatic animals.
He very properly divides them into such as are provided with blood and those without it—two divisions corresponding in modern language to vertebrate and invertebrate aquatic animals. The former are classified by him according to size, the further sub-divisions being based on the structure of the skeleton, mode of propagation, number of limbs, form of the body and physical character of the habitat. The work of the Roman ichthyologist H. Salviani (1514-1572), bears evidence of the high social position which the author held as physician to three popes. Its title is Aquatilium animalium historia (Rome, 1554-1557, fol.). It treats Salviani. Exclusively of the fishes of Italy.
Ninety-two species are figured on seventy-six plates, which, as regards artistic execution, are masterpieces of that period, although those specific characteristics which nowadays constitute the value of a zoological drawing were overlooked by the author or artist. No attempt is made at a natural classification, but the allied forms are generally placed in close proximity. The descriptions are equal to those given by Belon, entering much into the details of the economy and uses of the several species, and were evidently composed with the view of collecting in a readable form all that might prove of interest to the class of society in which the author moved.
Salviani’s work is of a high order. It could not fail to render ichthyology popular in the country to the fauna of which it was devoted, but it was not fitted to advance ichthyology as a science generally; in this respect Salviani is not to be compared with Rondelet or Belon. Rondelet (1507-1557) had the great advantage over Belon of having received a medical education at Paris, and especially of having gone through a complete course of instruction in anatomy as a pupil of Guentherus of Andernach. This is conspicuous throughout his works— Libri de piscibus marinis (Lyons, 1554); and Universae aquatilium historiae pars altera (Lyons, 1555). Nevertheless they cannot be regarded as more than considerably enlarged editions of Belon’s work. For, although he worked independently of the latter, the system adopted by him is characterized by the same absence of the true principles of classification.
His work is almost entirely limited to European and chiefly to Mediterranean forms, and comprises no fewer than one hundred and ninety-seven marine and forty-seven fresh-water fishes. His descriptions are more complete and his figures much more accurate than those of Belon; and the specific account is preceded by introductory chapters, in which he treats in a general manner of the distinctions, the external and internal parts, and the economy of fishes.
Like Belon, he had no conception of the various categories of classification—confounding throughout his work the terms “genus” and “species,” but he had an intuitive notion of what his successors called a “species,” and his principal object was to give as much information as possible regarding such species. For nearly a century the works of Belon and Rondelet continued to be the standard works on ichthyology; but the science did not remain stationary during that period. The attention of naturalists was now directed to the fauna of foreign countries, especially of the Spanish and Dutch possessions in the New World; and in Europe the establishment of anatomical schools and academies led to careful investigation of the internal anatomy of the most remarkable European forms. Limited as these efforts were as to their scope, they were sufficiently numerous to enlarge the views of naturalists, and to destroy that fatal dependence on preceding authorities which had kept in bonds even Rondelet and Belon.
The most noteworthy of those engaged in these inquiries in tropical countries were W. Marcgrave, who accompanied as physicians the Dutch governor, Count Maurice of Nassau, to Brazil (1630-1644). Of the men who left records of their anatomical researches, we may mention Borelli (1608-1679), who wrote a work De motu animalium (Rome, 1680, 4to), in which he explained the mechanism of swimming and the function of the air-bladder; M. Malpighi (1628-1694), who examined the optic nerve of the sword-fish; the celebrated J. Swammerdam (1637-1680), who described the intestines of numerous fishes; and J. Duverney (1648-1730), who investigated in detail the organs of respiration.
A new era in the history of ichthyology commences with Ray, Willughby and Artedi, who were the first to recognize the true principles by which the natural affinities of animals should be determined. Their labours stand in so intimate a connexion with each other that they represent but one great step in the progress of this science. Ray (1628-1705) was the friend and guide of F. Willughby (1635-1672). They found that a thorough reform in the method of treating the vegetable and animal kingdoms had become necessary; that the only way of bringing Ray and Willughby.
Order into the existing chaos was by arranging the various forms according to their structure. They therefore substituted facts for speculation, and one of the first results of this change, perhaps the most important, was that, having recognized “species” as such, they defined the term and fixed it as the starting-point of all sound zoological knowledge.
Although they had divided their work so that Ray attended to the plants principally, and Willughby to the animals, the Historia piscium (Oxf., 1686), which bears Willughby’s name on the title-page and was edited by Ray, is their joint production. A great part of the observations contained in it were collected during the journeys they made together in Great Britain and in the various countries of Europe. By the definition of fishes as animals with blood, breathing by gills, provided with a single ventricle of the heart, and either covered with scales or naked, the Cetaceans are excluded. The fishes proper are arranged primarily according to the cartilaginous or the osseous nature of the skeleton, and then subdivided according to the general form of the body, the presence or the absence of ventral fins, the soft or the spinous structure of the dorsal rays, the number of dorsal fins, &c. No fewer than four hundred and twenty species are thus arranged and described, of which about one hundred and eighty were known to the 245 authors from personal examination—a comparatively small proportion, but descriptions and figures still formed in great measure the substitute for our modern collections and museums.
With the increasing accumulation of forms, the want of a fixed nomenclature had become more and more felt. Peter Artedi (1705-1734) would have been a great ichthyologist if Ray or Willughby had not preceded him. But he was fully Artedi. Conscious of the fact that both had prepared the way for him, and therefore he did not fail to reap every possible advantage from their labours.
His work, edited by Linnaeus, is divided as follows:—. (1) In the Bibliotheca ichthyologica Artedi gives a very complete list of all preceding authors who had written on fishes, with a critical analysis of their works. (2) The Philosophia ichthyologica is devoted to a description of the external and internal parts of fishes; Artedi fixes a precise terminology for all the various modifications of the organs, distinguishing between those characters which determine a genus and such as indicate a species or merely a variety; in fact he establishes the method and principles which subsequently have guided every systematic ichthyologist. (3) The Genera piscium contains well-defined diagnoses of forty-five genera, for which he has fixed an unchangeable nomenclature. (4) In the Species piscium descriptions of seventy-two species, examined by himself, are given—descriptions which even now are models of exactitude and method. (5) Finally, in the Synonymia piscium references to all previous authors are arranged for every species, very much in the manner which is adopted in the systematic works of the present day.
Artedi has been justly called the father of ichthyology. So admirable was his treatment of the subject, that even Linnaeus Linnaeus. Could only modify and add to it.
Indeed, so far as ichthyology is concerned, Linnaeus has scarcely done anything beyond applying binominal terms to the species properly described and classified by Artedi. His classification of the genera appears in the 12th edition of the Systema thus:—.
Definition of the Class Pisces. Its Principal Divisions Fishes, constituting the class Pisces, may be defined as Craniate Vertebrata, or Chordata, in which the anterior portion of the central nervous system is expanded into a brain surrounded by an unsegmented portion of the axial skeleton; which are provided with a heart, breathing through gills; and in which the limbs, if present, are in the form of fins, as opposed to the pentadactyle, structure common to the other Vertebrata. With the exception of a few forms in which lungs are present in addition to the gills, thus enabling the animal to breathe atmospheric air for more or less considerable periods (Dipneusti), all fishes are aquatic throughout their existence. In addition to the paired limbs, median fins are usually present, consisting of dermal rays borne by endoskeletal supports, which in the more primitive forms are strikingly similar in structure to the paired fins that are assumed to have arisen from the breaking up of a lateral fold similar to the vertical folds out of which the dorsal, anal and caudal fins have been evolved. The body is naked, or scaly, or covered with bony shields or hard spines.
Leaving aside the Ostracophori, which are dealt with in a separate article, the fishes may be divided into three subclasses— I. Cyclostomi or Marsipobranchii, with the skull imperfectly developed, without jaws, with a single nasal aperture, without paired fins, and with an unpaired fin without dermal rays. Lampreys and hag-fishes. Selachii or Chondropterygii, with the skull well developed but without membrane bones, with paired nasal apertures, with median and paired fins, the ventrals bearing prehensile organs (claspers) in the males.
Sharks, skates and chimaeras. Teleostomi, with the skull well developed and with membrane bones, with paired nasal apertures, primarily with median and paired fins, including all other fishes. Anatomy The special importance of a study of the anatomy of fishes lies in the fact that fishes are on the whole undoubtedly the most archaic of existing craniates, and it is therefore to them especially that we must look for evidence as to the evolutionary history of morphological features occurring in the higher groups of vertebrates. In making a general survey of the morphology of fishes it is essential to take into consideration the structure of the young developing individual (embryology) as well as that of the adult (comparative anatomy in the narrow sense).
Palaeontology is practically dumb excepting as regards external form and skeletal features, and even of these our knowledge must for long be in a hopelessly imperfect state. While it is of the utmost importance to pay due attention to embryological data it is equally important to consider them critically and in conjunction with broad morphological considerations.
Taken by themselves they are apt to be extremely misleading. External Features.—The external features of a typical fish are intimately associated with its mode of life. Its shape is more or less that of a spindle; its surface is covered with a highly glandular epidermis, which is constantly producing lubricating mucus through the agency of which skin-friction is reduced to an extraordinary degree; and finally it possesses a set of remarkable propelling organs or fins.
The exact shape varies greatly from the typical spindle shape with variations in the mode of life; e.g. Bottom-living fishes may be much flattened from above downwards as in the rays, or from side to side in the Pleuronectids such as flounder, plaice or sole, or the shape may be much elongated as in the eels. Head, Trunk and Tail.—In the body of the fish we may recognize the three main sub-divisions of the body—head, trunk and tail—as in the higher vertebrates, but there is no definite narrowing of the anterior region to form a neck such as occurs in the higher groups, though a suspicion of such a narrowing occurs in the young Lepidosiren. 251 The tail, or postanal region, is probably a secondary development—a prolongation of the hinder end of the body for motor purposes. This is indicated by the fact that it frequently develops late in ontogeny.
The sharks have been referred to as possessing heterocercal tails, but, though this is true of the majority, within the limits of the group all three types of tail-fin occur, from the protocercal tail of the fossil Pleuracanthids and the living Chlamydoselachus to the highly developed, practically homocercal tail of the ancient Cladoselache(fig. The praecaudal portion of the fin-fold on the dorsal side of the body becomes broken into numerous finlets in living Crossopterygians, while in other fishes it disappears throughout part of its length, leaving only one, two or three enlarged portions—the dorsal fins (fig. Similarly the praecaudal part of the fin-fold ventrally becomes reduced to a single anal fin ( a.f.), occasionally continued backwards by a series of finlets ( Scombridae).
In the sucker-fishes ( Remora, Eckeneis) the anterior dorsal fin is metamorphosed into a sucker by which the creature attaches itself to larger fishes, turtles, &c. From Cambridge Natural History, vol.
Vii., “Fishes, &c.,” by permission of Messrs. Macmillan & Co., Ltd. 4.— Tilapia dolloi, a teleostean fish, to illustrate external features. (After Boulenger.) A, Side view.
B, First branchial arch. A.f, Anal fin.
C.f, Caudal fin. D.f, Dorsal fin. G.f, Gill lamellae. G.r, Gill rakers. L.l, Lateral line organs.
N, Nasal opening. P.f, Pelvic fin.
P.op, Preoperculum. Pt.f, Pectoral fin. The paired fins—though more recent developments than the median—are yet of very great morphological interest, as in them we are compelled to recognize the homologues of the paired limbs of the higher vertebrates. We accordingly distinguish the two pairs of fins as pectoral or anterior and pelvic (= “ventral”) or posterior. There are two main types of paired fin—the archipterygial type, a paddle-like structure supported by a jointed axis which bears lateral rays and exists in an unmodified form in Neoceratodus alone amongst living fishes, and the actinopterygial type, supported by fine raylike structures as seen in the fins of any ordinary fish. The relatively 252 less efficiency of the archipterygium and its predominance amongst the more ancient forms of fishes point to its being the more archaic of these two types. In the less highly specialized groups of fishes the pectoral fins are close behind the head, the pelvic fins in the region of the cloacal opening.
In the more specialized forms the pelvic fins frequently show a more or less extensive shifting towards the head, so that their position is described as thoracic (fig. 4) or jugular ( Gadus—cod, haddock, &c., fig. Brothers Karamazov Richard Pevear Pdf Free. 5.—Burbot ( Lota vulgaris), with jugular ventral fins. The median fin, especially in its caudal section, is the main propelling organ: the paired fins in the majority of fishes serve for balancing.
In the Dipneusti the paired fins are used for clambering about amidst vegetation, much in the same fashion as the limbs of Urodeles. In Ceratodus they also function as paddles. In various Teleosts the pectoral fins have acquired secondarily a leg-like function, being used for creeping or skipping over the mud ( Periophthalmus; cf. Also Trigloids, Scorpaenids and Pediculati).
In the “flying” fishes the pectoral fins are greatly enlarged and are used as aeroplanes, their quivering movements frequently giving a (probably erroneous) impression of voluntary flapping movements. In the gobies and lumpsuckers ( Cyclopteridae) the pelvic fins are fused to form an adhesive sucker; in the Gobiesocidae they take part in the formation of a somewhat similar sucker. The evolutionary history of the paired limbs forms a fascinating chapter in vertebrate morphology. As regards their origin two hypotheses have attracted special attention: (1) that enunciated by Gegenbaur, according to which the limb is a modified gill septum, and (2) that supported by James K. Balfour, St George Mivart and others, that the paired fins are persisting and modified portions of a once continuous fin-fold on each side of the body. The majority of morphologists are now inclined to accept the second of these views.
Each has been supported by plausible arguments, for which reference must be made to the literature of the subject. Both views rest upon the assumed occurrence of stages for the existence of which there is no direct evidence, viz. In the case of (1) transitional stages between gill septum and limb, and in the case of (2) a continuous lateral fin-fold. (There is no evidence that the lateral row of spines in the acanthodian Climatius has any other than a defensive significance.) In the opinion of the writer of this article, such assumptions are without justification, now that our knowledge of Dipnoan and Crossopterygian and Urodele embryology points towards the former possession by the primitive vertebrate of a series of projecting, voluntarily movable, and hence potentially motor structure on each side of the body. It must be emphasized that these—the true external gills—are the only organs known actually to exist in vertebrates which might readily be transformed into limbs. When insuperable objections are adduced to this having actually taken place in the course of evolution, it will be time enough to fall back upon purely hypothetical ancestral structures on which to base the evolutionary history of the limbs.
The ectoderm covering the general surface is highly glandular. In the case of the Dipneusti, flask-shaped multicellular glands like those of Amphibians occur in addition to the scattered gland cells. A characteristic feature of glandular activity is the production of a slight electrical disturbance. In the case of Malopterurus this elsewhere subsidiary function of the skin has become so exaggerated as to lead to the conversion of the skin of each side of the body into a powerful electrical organ. Each of these consists of some two million small chambers, each containing an electric disk and all deriving their nerve supply from the branches of a single enormous axis cylinder.
This takes its origin from a gigantic ganglion cell situated latero-dorsally in the spinal cord between the levels of the first and second spinal nerves. Cement Organs.—The larvae of certain Teleostomes and Dipnoans possess special glandular organs in the head region for the secretion of a sticky cement by which the young fish is able to attach itself to water-plants or other objects. As a rule these are ectodermal in origin; e.g. In Lepidosiren and Protopterus the crescentic cement organ lying ventrally behind the mouth consists of a glandular thickening of the deep layer of the ectoderm. In young ganoid fishes preoral cement organs occur. In Crossopterygians there is one cup-shaped structure on each side immediately in front of the mouth. Here the glandular epithelium is endodermal, developed as an outgrowth from the wall of the alimentary canal, closely resembling a gill pouch.
In Amia the same appears to be the case. In a few Teleosts similar organs occur, e.g. Sarcodaces, Hyperopisus, where so far as is known they are ectodermal.
Photogenic Organs.—The slimy secretion produced by the epidermal glands of fishes contains in some cases substances which apparently readily undergo a slow process of oxidation, giving out light of low wave-length in the process and so giving rise to a phosphorescent appearance. In many deep-sea fishes this property of producing light-emitting secretion has undergone great development, leading to the existence of definite photogenic organs. These vary much in character, and much remains to be done in working out their minute structure.
Good examples are seen in the Teleostean family Scopelidae, where they form brightly shining eye-like spots scattered about the surface of the body, especially towards the ventral side. 6.—Larva of Polypterus. (After Budgett.) From Phil. Transactions, Royal Society of London. 7.—Thirty Days’ Larval Lepidosiren.
(After Graham Kerr.) External Gills.—In young Crossopterygians and in the young Protopterus and Lepidosiren true external gills occur of the same morphological nature as those of Urodele amphibians. In Crossopterygians a single one is present on each side on the hyoid arch; in the two Dipnoans mentioned four are present on each side—on visceral arches III., IV., V. (It may be recalled that in Urodeles they occur on arches III., IV.
And V., with vestiges on arches I. Each external gill develops as a projection of ectoderm with mesodermal core near the upper end of its visceral arch; the main aortic arch is prolonged into it as a loop. When fully developed it is pinnate, and is provided with voluntary muscles by which it can be moved freely to renew the water in contact with its respiratory surface. In the case of Polypterus a short rod of cartilage projects from the hyoid arch into the base of the external gill.
Their occurrence with identical main features in the three groups mentioned indicates that the external gills are important and archaic organs of the vertebrata. Their non-occurrence in at least some of the groups where they are absent is to be explained by the presence of a large vascular yolk sac, which necessarily fulfils in a very efficient way the respiratory function. From Bridge, Cambridge Natural History, vol. Vii., “Fishes, &c.” (by permisson of Macmillan & Co., Ltd.). After Boas, Lehrbuch der Zoologie (by permission of Gustav Fischer). 8.—Diagrams to illustrate the relations of branchial clefts and pharynx in an Elasmobranch (A) and a Teleost (B); 1, 2, &c., Branchial septa.
B.c, Opercular cavity. B.l, Respiratory lamellae. E.b.a, Opercular opening. Hy.a, Hyoid arch. Hy.c, Hyobranchial cleft. L.s, Valvular outer edge of gill septum. N, Nasal aperture.
Oes, Oesophagus. Op, Operculum. P.q, Palato quadrate cartilage.
Sp, Spiracle. Alimentary Canal.—The alimentary canal forms a tube traversing the body from mouth to cloacal opening. Corresponding with structural and functional differences it is for descriptive 253 purposes divided into the following regions—(1) Buccal cavity or mouth cavity, (2) Pharynx, (3) Oesophagus or gullet, (4) Stomach, (5) Intestine, and (6) Cloaca. The buccal cavity or mouth cavity is morphologically a stomodaeum, i.e. It represents an inpushing of the external surface.
Its opening to the exterior is wide and gaping in the embryo in certain groups (Selachians and Crossopterygians), and even in the adult among the Cyclostomata, but in the adult Gnathostome it can be voluntarily opened and shut in correlation with the presence of a hinged jaw apparatus. The mouth opening is less or more ventral in position in Cyclostomes and Selachians, while in Dipnoans and Teleostomes it is usually terminal. In certain cases ( e.g. Lepidosiren) the buccal cavity arises by secondary excavation without any actual pushing in of ectoderm. It is highly characteristic of the vertebrata that the pharynx—the portion of the alimentary canal immediately behind the buccal cavity—communicates with the exterior by a series of paired clefts associated with the function of respiration and known as the visceral clefts. It is especially characteristic of fishes that a number of these clefts remain open as functional breathing organs in the adult.
The visceral clefts arise as hollow pouches (or at first solid projections) of the endoderm. Each pouch fuses with the ectoderm at its outer end and then becomes perforated so as to form a free communication between pharynx and exterior. The mesenchymatous packing tissue between consecutive clefts forms the visceral arches, and local condensation within each gives rise to important skeletal elements—to which the name visceral arches is often restricted.
From the particular skeletal structures which develop in the visceral arches bounding it the anterior cleft is known as the hyomandibular cleft, the next one as hyobranchial. In common usage the hyomandibular cleft is called the spiracle, and the series of clefts behind it the branchial clefts. The typical functional gill cleft forms a vertical slit, having on each side a gill septum which separates it from its neighbours in the series. The lining of the gill cleft possesses over a less or greater extent of its area a richly developed network of capillary blood-vessels, through the thin covering of which the respiratory exchange takes place between the blood and the water which washes through the gill cleft. The area of respiratory surface tends to become increased by the development of outgrowths.
Frequently these take the form of regular plate-like structures known as gill lamellae. In the Selachians these lamellae are strap-like structures ( Elasmobranch) attached along nearly their whole length to the gill septum as shown in fig. In the Holocephali and in the sturgeon the outer portions of the gill septa have disappeared and this leads to the condition seen in the higher Teleostomes (fig. 8, B), where the whole of the septum has disappeared except its thick inner edge containing the skeletal arch. It follows that in these higher Teleostomes—including the ordinary Teleosts—the gill lamellae are attached only at their extreme inner end. In the young of Selachians and certain Teleosts ( e.g. Gymnarchus and Heterotis) the gill lamellae are prolonged as filaments which project freely to the exterior.
These must not be confused with true external gills. The partial atrophy of the gill septa in the Teleostomes produces an important change in their appearance. Whereas in the Selachian a series of separate gill clefts is seen in external view each covered by a soft valvular backgrowth of its anterior lip, in the Teleostean fish, on the other hand, a single large opening is seen on each side (opercular opening) covered over by the enormously enlarged valvular flap belonging to the anterior lip of the hyobranchial cleft. This flap, an outgrowth of the hyoid arch, is known as the operculum. In the Teleostomi there are usually five functional clefts, but these are the survivors of a formerly greater number. Evidence of reduction is seen at both ends of the series. In front of the first functional cleft (the hyobranchial) there is laid down in the embryo the rudiment of a spiracular cleft.
In the less highly organized fishes this survives in many cases as an open cleft. In many sharks and in sturgeons the spiracle forms a conspicuous opening just behind the eye. In rays and skates, which are modified in correlation with their ground feeding habit, the spiracle is a large opening which during the great widening out of the body during development comes to be situated on the dorsal side, while the branchial clefts come to be ventral in position. In existing Crossopterygians the spiracle is a slit-like opening on the dorsal side of the head which can be opened or closed at will.
In Dipneusti, as in the higher Teleostomes, the spiracle is found as an embryonic rudiment, but in this case it gives rise in the adult to a remarkable sense organ of problematical function. Traces of what appear to be pre-spiracular clefts exist in the embryos of various forms. Perhaps the most remarkable of these is to be found in the larval Crossopterygian, and apparently also in Amia at least, amongst the other ganoids, where a pair of entodermal pouches become cut off from the main entoderm and, establishing an opening to the exterior, give rise to the lining of the cement organs of the larva. Posteriorily there is evidence that the extension backwards of the series of gill clefts was much greater in the primitive fishes. In the surviving sharks ( Chlamydoselachus and Notidanus cinereus), there still exist in the adult respectively six and seven branchial clefts, while in embryonic Selachians there are frequently to be seen pouch-like outgrowths of entoderm apparently representing rudimentary gill pouches but which never develop. Further evidence of the progressive reduction in the series of clefts is seen in the reduction of their functional activity at the two ends of the series.
The spiracle, even where persisting in the adult, has lost its gill lamellae either entirely or excepting a few vestigial lamellae forming a “pseudobranch” on its anterior wall (Selachians, sturgeons). A similar reduction affects the lamellae on the anterior wall of the hyobranchial cleft (except in Selachians) and on the posterior wall of the last branchial cleft. A pseudobranch is frequently present in Teleostomes on the anterior wall of the hyobranchial cleft, i.e. On the inner or posterior face of the operculum. It is believed by some morphologists to belong really to the cleft in front. Phylogeny.—The phylogeny of the gill clefts or pouches is uncertain. The only organs of vertebrates comparable with them morphologically are the enterocoelic pouches of the entoderm which 254 give rise to the mesoderm.
It is possible that the respiratory significance of the wall of the gill cleft has been secondarily acquired. This is indicated by the fact that they appear in some cases to be lined by an ingrowth of ectoderm. This suggests that there may have been a spreading inwards of respiratory surface from the external gills. It is conceivable that before their walls became directly respiratory the gill clefts served for the pumping of fresh water over the external gills at the bases of which they lie. 9.—Lung of Neoceratodus, opened in its lower half to show its cellular pouches. A, Right half; b, Left half; c, Cellular pouches; e, Pulmonary vein; f, Arterial blood-vessel; oe, Oesophagus, opened to show glottis ( gl.) Lung.—As in the higher vertebrates, there develops in all the main groups of gnathostomatous fishes, except the Selachians, an outgrowth of the pharyngeal wall intimately associated with gaseous interchange. In the Crossopterygians and Dipnoans this pharyngeal outgrowth agrees exactly in its mid-ventral origin and in its blood-supply with the lungs of the higher vertebrates, and there can be no question about its being morphologically the same structure as it is also in function.
In the Crossopterygian the ventrally placed slit-like glottis leads into a common chamber produced anteriorly into two horns and continued backwards into two “lungs.” These are smooth, thin-walled, saccular structures, the right one small, the left very large and extending to the hind end of the splanchnocoele. In the Dipnoans the lung has taken a dorsal position close under the vertebral column and above the splanchnocoele. Its walls are sacculated, almost spongy in Lepidosiren and Protopterus, so as to give increase to the respiratory surface. In Nexeratodus (fig. 9) an indication of division into two halves is seen in the presence of two prominent longitudinal ridges, one dorsal and one ventral. In Lepidosiren and Protopterus the organ is completely divided except at its anterior end into a right and a left lung. The anterior portion of the lung or lungs is connected with the median ventral glottis by a short wide vestibule which lies on the right side of the oesophagus.
In the Teleostei the representative of the lung, here termed the swimbladder, has for its predominant function a hydrostatic one; it acts as a float. It arises as a diverticulum of the gut-wall which may retain a tubular connexion with the gut ( physostomatous condition) or may in the adult completely lose such connexion ( physoclistic). It shows two conspicuous differences from the lung of other forms: (1) it arises in the young fish as a dorsal instead of as a ventral diverticulum, and (2) it derives its blood-supply not from the sixth aortic arch but from branches of the dorsal aorta. These differences are held by many to be sufficient to invalidate the homologizing of the swimbladder with the lung. The following facts, however, appear to do away with the force of such a contention.
(1) In the Dipneusti ( e.g. Neoceratodus) the lung apparatus has acquired a dorsal position, but its connexion with the mid-ventral glottis is asymmetrical, passing round the right side of the gut. Were the predominant function of the lung in such a form to become hydrostatic we might expect the course of evolution to lead to a shifting of the glottis dorsalwards so as to bring it nearer to the definitive situation of the lung. (2) In Erythrinus and other Characinids the glottis is not mid-ventral but decidedly lateral in position, suggesting either a retention of, or a return to, ancestral stages in the dorsalward migration of the glottis. (3) The blood-supply of the Teleostean swimbladder is from branches of the dorsal aorta, which may be distributed over a long anteroposterior extent of that vessel.
Embryology, however, shows that the swimbladder arises as a localized diverticulum. It follows that the blood-supply from a long stretch of the aorta can hardly be primitive. We should rather expect the primitive blood-supply to be from the main arteries of the pharyngeal wall, i.e. From the hinder aortic arch as is the case with the lungs of other forms. Now in Amia at least we actually find such a blood-supply, there being here a pulmonary artery corresponding with that in lung-possessing forms. Taking these points into consideration there seems no valid reason for doubting that in lung and swimbladder we are dealing with the same morphological structure.
Function.—In the Crossopterygians and Dipnoans the lung is used for respiration, while at the same time fulfilling a hydrostatic function. Amongst the Actinopterygians a few forms still use it for respiration, but its main function is that of a float. In connexion with this function there exists an interesting compensatory mechanism whereby the amount of gas in the swimbladder may be diminished (by absorption), or, on the other hand, increased, so as to counteract alterations in specific gravity produced, e.g. By change of pressure with change of depth.
This mechanism is specially developed in physoclistic forms, where there occur certain glandular patches (“red glands”) in the lining epithelium of the swimbladder richly stuffed with capillary blood-vessels and serving apparently to secrete gas into the swimbladder. That the gas in the swimbladder is produced by some vital process, such as secretion, is already indicated by its composition, as it may contain nearly 90% of oxygen in deep-sea forms or a similar proportion of nitrogen in fishes from deep lakes, i.e. Its composition is quite different from what it would be were it accumulated within the swimbladder by mere ordinary diffusion processes. Further, the formation of gas is shown by experiment to be controlled by branches of the vagus and sympathetic nerves in an exactly similar fashion to the secretion of saliva in a salivary gland. (See below for relations of swimbladder to ear). Of the important non-respiratory derivatives of the pharyngeal wall (thyroid, thymus, postbranchial bodies, &c.), only the thyroid calls for special mention, as important clues to its evolutionary history are afforded by the lampreys. In the larval lamprey the thyroid develops as a longitudinal groove on the pharyngeal floor.
From the anterior end of this groove there pass a pair of peripharyngeal ciliated tracts to the dorsal side of the pharynx where they pass backwards to the hind end of the pharynx. Morphologically the whole apparatus corresponds closely with the endostyle and peripharyngeal and dorsal ciliated tracts of the pharynx of Amphioxus. The correspondence extends to function, as the open thyroid groove secretes a sticky mucus which passes into the pharyngeal cavity for the entanglement of food particles exactly as in Amphioxus. Later on the thyroid groove becomes shut off from the pharynx; its secretion now accumulates in the lumina of its interior and it functions as a ductless gland as in the Gnathostomata. The only conceivable explanation of this developmental history of the thyroid in the lamprey is that it is a repetition of phylogenetic history. Behind the pharynx comes the main portion of the alimentary canal concerned with the digestion and absorption of the food.
This forms a tube varying greatly in length, more elongated and coiled in the higher Teleostomes, shorter and straighter in the Selachia.